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Recursion equations in predicting band width under gradient elution
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Abstract

The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coef-
ficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable
mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local
equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local
probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to
simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local
retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional
theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion
coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experi-
mental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient
elution.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Generally, solute zones synchronously undergo two
movements with opposite-effects, relative migration and
spreading in column separation processes[1,2]. Accurately
predicting the migration and spreading of solute zone, es-
pecially, under gradient elution is the first task, though
analysts are mostly interested in finding optimal parameters
with satisfactory separation efficiency.

Chemometric approaches and function models are always
used in predicting zone migration. Sun et al. adopted a mix-
ture design simplex method for computer-assisted optimisa-
tion of the mobile phase composition[3], and Vivo-Truyols
et al. simulated peak with an asymmetrical peak model[4].
Lisseter optimized ternary mobile phases with a seven-point
factorial design[5]. Vanbel used a sigmoidal model to de-
scribe capacity factors, peak heights and peak areas[6]. The
advantage of chemometric tools is that no explicit models
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are required, conversely, it requires a relatively a larger num-
ber of experiments to perform to make it applicable.

When the models with physical chemistry meanings are
available, chromatographic optimization is easier to perform
with regression methods. Some regression parameters can
be obtained with chromatographic model and limited num-
ber of experiments. Then optimal separation conditions can
be found through a computer-assisted optimization with the
model and regression parameters. Snyder and co-workers
developed the linear solvent strength (LSS) model[7,8]
widely applied in retention prediction. Schoenmakers et al.
[9,10] derived the solubility parameter model and the inter-
phase model using solubility parameters. Geng and Regnier
[11,12] proposed the stoichiometric displacement model
(SDM), a logarithmic dependence of retention to modifier
concentration. Jandera and others widely studied gradient
elution[13,14], and derived two important equations on the
retention models of the retention volume in reversed-phase
high-performance liquid chromatography (RP-HPLC),
normal-phase or ion-exchange. These retention models can
fit some retention data very well.
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For band dispersion, Martin and Synge[15] originally
proposed the concept of “height equivalent to one the theo-
retical plate”, which is defined as the thickness of the layer
such that the solution issuing from it is in equilibrium with
the mean concentration of solute in stationary phase through-
out the layer. The definition indicated that the whole sepa-
ration path is assumed to be divided into a series of linked
stages or plates, and the mean solute concentrations in the
mobile or stationary phase in a layer (or a plate) change con-
tinuously with serial number of plate and time coordinate.
The assumptions were made that the distribution ratio of one
solute between the two phases at equilibrium in one plate.
The early Craig plate model used a great number of iden-
tical separation flasks connected in series to simulate chro-
matographic column[17]. van Deemter et al.[16] related
plate height to the flow velocity of mobile phase, which was
widely applied in multiform column separations. Horavth
[18], Poppe et al.[19] and other scientists made important
contributions to the field.

The continuity equation describing the migration and
shape of solute zones is used to construct plate theory
[1,2,20]. Giddings defined plate height as the ratio of the
total effective diffusion coefficient (D) to uniform transla-
tion velocity (v) of solute zones in the whole process of
column separation[1]. In fluid mechanics, there are two
basic description method, Lagrangian method and Eulerian
method. Lagrangian description method is to keep track of
identifiable elements of mass (e.g. in particle mechanics),
and Eulerian description method focuses attention on the
properties of a flow at a given point in space as a function of
time, in which the properties of a flow field are described as
functions of space coordinates and time[21]. In fact, Plate
theory only adopted a utilitarian method which appears like
Eulerian description due to that plate height is a constant for
given chromatographic system, but could not be as cells (or
layers) small enough so that the thermodynamic properties
of the system vary little over each cell.

The literature concerning gradient elution showed that
there were unacceptable errors in the theoretical calculation
of band widths with theoretical plate, and sometimes the er-
ror can reach 50%[7,13] although the agreement between
experiment and theory was satisfactory for the prediction of
retention volumes. In fact, the unacceptable calculation er-
rors of band widths are unavoidable as long as one adopts the
concept of plate height, because the composition of the mo-
bile phase affects local plate height in separation processes
through space- and time-variable axial dispersion coefficient
and axial migration velocity. To get over this limitation, Gid-
dings introduced the concept of the local plate height, but he
and the other scientists did not do further detailed researches
on this subject[1]. Therefore, we need an original theoretical
model to gain some breakthrough in the framework of plate
theory [22–24], and to describe solute retentions and band
dispersions synchronously and more truly, which is a base
to obtain optimal gradient profiles for given solute and sep-
aration system with the methods of modern cybernetics un-

der gradient elution or other similar cases. Non-equilibrium
thermodynamic separation theory in preceding papers could
be used to establish the recursion equations[20,22–28].

In this paper, we originally present two recursion equa-
tions concerning the migration and spreading of a cell occu-
pied by the solute with a fixed, identifiable quantity of mass
or probability (Lagrangian description), which observably
differ from the methods of plate theory (Eulerian descrip-
tion). The validity of recursion equations is examined by
the examples of reversed-phase under isocratic and gradient
elution of small molecular series. The results show that re-
cursion equations have more advantages in predicting band
widths than the literature equation[14].

2. Theoretical

2.1. The summarization of non-equilibrium thermodynamic
separation theory (NTST)

It is considered that NTST separation processes are
certainly irreversible due to the fact that solute zones
non-homogeneously and space–time varyingly distribute in
space- and time-dependent fields, and the solute in each
small volume cell that solutes occupied jointly are open
systems of thermodynamics in applied fields (e.g. electric
field and chemical potential, etc.)[2,23–25]. Clausius’ heat
death (band spreading of one component) and Darwin’s
evolutionism (separating among different components) si-
multaneously coexist in separation processes[2]. The two
opposite processes originate simultaneously from the ir-
reversibility of separation processes, which are described
quantitatively by the items of entropy production and en-
tropy flows, respectively. The entropy balance equation in
non-equilibrium thermodynamics has been used to reveal
quantificationally the irreversibility of separation processes,
which is the framework of NTST instead of the framework
of contemporary separation theories based on the mass con-
servation equation with dynamic methods. With recursion
equations and multi-objective cost function (including in-
tegral optimizing functional, separation time, the length of
separation path and solute band width), we could find the
optimal thermodynamic separation path or optimal decision
sequence through using non-equilibrium thermodynamic
separation theory, multi-stage decision and optimal control
methods[25–28].

2.2. Discrete space–time of solute zones

In separation processes, the diffusion and migration as
two essential physical chemistry phenomena belong to the
category of linear non-equilibrium thermodynamics[29,30].
The assumption of the local equilibrium in non-equilibrium
thermodynamics was described as “it must be assumed that
the mass or volume elements (cells) of a continuous medium
can be considered as equilibrium state parameters despite
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the fact that various processes take place between the neigh-
bouring cells. As a consequence of this condition—which
is usually called local equilibrium”[29]. The local equilib-
rium assumption as a foundation stone in non-equilibrium
thermodynamics[30] allows us to divide the topological
space occupied by solutes (at given time) into cells small
enough so that the thermodynamic properties of the system
vary little over each cell but large enough so that the cells
can be treated as macroscopic thermodynamic subsystems
in contact with their surroundings. The assumption also al-
lows us to divide the overall evolution time of a complex
system into many small time intervals. Thus the assumption
ensures that we can structure discrete space–time systems
in order to control the separation systems time-varyingly
[31,32].

On the viewpoint of mechanics of continuous media
[33,34], the spreading and the relative migration of solute
zones as two basic macro motions on the separation path
ought to belong to the ‘deformation’ and ‘flow’ motions
of continuous media, respectively. To catch hold of the ba-
sic characters of the both macro motions of solute zones,
we could consider that the infinite small volume elements,
dΩ = Adx, of the solute zone (the componenti) stretches
with the ‘stretch ratio’λi,k along separation path. It is clear
that the stretch motion of volume elements only occurs in
the fluid of same component. This stretch motion corre-
sponds to the diffusion motion that leads to the configura-
tion change of the solute zone distribution. Synchronously,
the volume element markedj in the solute zone slip with
a time-varying velocity,�vi,j,k, at the timetk, which must
differ from other component’s along separation path. The
motions of solute zones are shown visually inFig. 1 on
Lagrangian description and local equilibrium assumption in
fluid dynamics.

Fig. 1. The two motions of infinitesimal volume elements of solute zones
are in both typical motion forms, ‘deformation’ (spreading) and ‘flow’
(relative migration) in time-varying external force fields at the time interval
betweent = t0 (a) andt = tk (b).

In Fig. 1, we arbitrarily chose three adjoining volume el-
ements of the two components,i andi+ 1, which are in the
regionx0 ∼ x0 + δj,k=0 (j = 1,2,3, . . . , J), whereδj,k=0
is the length of the volume elementj on x axis along sep-
aration path at initial timetk=0 in Fig. 1a. The local solute
densities of two components,i and i + 1, areρi,j,k=0 and
ρi+1,j,k=0 in the region. Apparently, these local solute den-
sities determine corresponded macro density distributions,
ρi(x, t0) andρi+1(x, t0), of solute zones. Local velocities of
the volume elements of the componentsi and i + 1 can be
indexed by time-varying velocities,�vi,j,k and �vi+1,j,k due
to that the volume elements are in time-varying external
fields. For any effective separation process, there is the rela-
tionship,�vi,j,k �= �vi+1,j,k, which just causes the slip motion
between the volume elements of two separable components.
Along the direction of ‘the arrow of time’[35] (tk < tk+1),
the solute system will evolve a new state that the volume el-
ements would have a new local solute densities inFig. 1b.,
whereρi,j,k in the regionxk ∼ xk + λi,kδj,k=0 andρi+1,j,k
in xk ∼ xk + λi+1,kδj,k=0 with local velocities�vi,j,k and
�vi+1,j,k, respectively.

There are two accepted and essential assumptions in
column separations: (1) the total amount of one solute is
constant in separation processes; (2) one type of distribution
curve can describe one solute distribution at any separation
time, such as Gaussian distribution or one kind of expo-
nentially modified Gaussian distributions[36,37]. The two
assumptions can be traced to fluids’ deformation motion in
fluid dynamics with the axiom of continuity—any deforma-
tion can only be described by single valued transformations
which can be continuously differentiated as many times
as required[33,34]. Based on the description of the meso-
scopic approach[38], we can consider that a separation
process is a set of the combination of solutes’ volume el-
ements that simply stretch and move on separation path in
external force fields.

In separation science, space- and time-dependent fields,
uj,k, generally include the chemical potential between
mobile and stationary phase due to the space- and time-
dependent solvent strength under gradient elution[13,2], or
due to the space- and time-dependent solute concentration in
non-linear chromatography[39], or due to time-varying elec-
tric field in capillary electrophoresis[40], etc. With the local
equilibrium assumption we can define a set of local thermo-
dynamic variables in given volume elementj of solute zone
i at the timetk in separation processes, such as local molar
concentration,ci,j,k, local migration velocity,�vi,j,k, local
diffusion coefficient,Di,j,k, local thermodynamic distribu-
tion constant,Ki,j,k, and local capacity factor,k′

i,j,k, etc.
Accordingly, we can define local external force fields that
acts on the given volume elementj of the solute zonei at the
time tk, these local external force fields include local strong
eluent concentration of mobile phase,ϕi,j,k, local chemical
potential,µi,j,k, and electrical field strength,Ei,j,k, etc. One
can use any thermodynamic laws with local thermodynamic
variables in the identifiable volume elements[29,30].
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2.3. General recursion equations in column separation

In the time interval�ti,k, the migration distance of the
volume elementj of the solute zonei along the longitudinal
direction (x coordinates) in stationary phase is�Xi,j,k =
Xi,j,k+1 − Xi,j,k with the local migration velocity,�vi,j,k, in
space- and time-dependent fields, whereXi,j,k andXi,j,k+1
are the migration positions of the volume elementj in sta-
tionary phase at the timetk and tk+1, respectively. So the
recursion equation concerning migration position of the cell
j can be expressed as:

Xi,j,k+1 = Xi,j,k + �vi,j,k �tk (1)

Eq. (1) indicates the slip motion of the cellj of the solute
i, and means that the migration distance of the solute is the
accumulation of the local migration velocity to the migration
time. In linear non-ideal chromatography it does not need to
distinguish the number of the volume element,j, due to the
same thermodynamic behaviours of each volume element. In
this case, we can predigest the local variables, such as from
�vi,j,k to �vi,k, or from ϕi,j,k to ϕi,k or Xi,j,k+1 to Xi,k, etc.
The initial condition ofEq. (1) is Xi,0 = 0 when the solute
is at the column inlet at the run beginning. Its termination
condition isXi,K = L, when the solute is at the column
terminal at the end of separation process,tK = tR, wheretR
is solute retention time. We callEq. (1) general migration
recursion equation of solute zones.

We may choose [−2σ, 2σ] as the research region of a
solute zone, of course, [−3σ, 3σ] or bigger research regions
can also be chosen, whereσ is standard deviation of solute
zone distribution. Based on the local equilibrium assumption
and the axiom of continuum (Fig. 1) we can obtain the
recursion equation concerning the stretch of a cell in�tk,

mi,j,k+1 =
√

m2
i,j,k +

(
32

J2

)
Di,j,k �tk

+ (�vi,j+1,k − �vi,j,k)�tk (2)

where mi,j,k+1 and mi,j,k are the volume element width
along column axes of the cellj of solutei at the timetk+1, at
the timetk+1, respectively. And�vi,j+1,k is the linear velocity
of the cellj + 1 of the solutei in �tk alongx coordinates.
The first term at the right-hand side ofEq. (2) is the local
diffusion term of the cellj, which means the accumulation
of the local apparent diffusion coefficient to the migration
time, and the increment of this term is always positive since
Di,j,k > 0. And the second term at the right-hand side of
Eq. (2) is the contribution to the width of the cell due to
the overlapping and stretching between adjacent cells, and
this term may be negative, zero and positive, which brings
the distortion of band shape. This term will play an impor-
tant role in non-linear chromatography, although it is not
discussed in this paper. We callEq. (2) general diffusion
recursion equation of the cells of the solute zone.

In linear non-ideal chromatography, the second term at
the right-hand side ofEq. (2)is zero due to�vi,j+1,k = �vi,j,k.
Therefore,Eq. (2)can be predigested as:

σ2
i,k+1 = σ2

i,k + 2Di,k �tk (3)

whereσi,k andσi,k+1 are the solute standard deviation at
the timestk and tk+1, respectively. The initial condition of
Eq. (3) is the solute standard deviation at the beginning of
separation,σk=0 = (

√
3/6)(V0L)(Ft0), and V0 is the in-

jected solute column,L the column length,F the volume
flow-rate of mobile phase,t0 the column dead time. The ter-
mination condition ofEq. (3)is the solute standard deviation
at the end of separation process whentK,i = tR,i. Eq. (3)
indicates that the incremental part of the standard deviation
σi,k (corresponding to the solute band width) of the solute
zonei arises from the accumulation ofDi,k to �tk.

2.4. Band width recursion equation in RP-HPLC

In gradient elution solute zones are acted at any time
in the space- and time-dependent field due to the space-
and time-dependent solvent strength[8,13], which can be
expressed by local strong eluent concentration of mobile
phase,ϕi,j,k. And the local chemistry potentialµi,j,k or lo-
cal capacity factork′

i,j,k is determined by the local mobile
phase composition,ϕi,j,k, which veritably affects the migra-
tion and broadening of the cellj of the solutei at tk. For
any gradient profiles of the strong eluent concentration in a
multi-component mobile phase,ϕ = f(t), it can be treated
with infinite small segments of step gradient in the equal
time unit,�Tk (e.g. 0.1 min, whose magnitude is indepen-
dent of the time serial number,k). Thus, the gradient profiles
of the strong eluent at the pump head can be described as
concentration sequence{ϕk}.The well known integral equa-
tion of gradient retention[13] is:∫ tR−t0

0

dt

t0k(t)
= 1 (4)

Considering the initial condition of the solute migration
(Xi,0 = 0) and the termination boundary condition (Xi,K =
L), the discrete form ofEq. (4)can be written as:

K−1∑
k=0

[
�Tk

t0k
′
i,k

]
= 1 (5)

Through introducing the constant time unit�Tk in Eq. (5),
the boundary condition of the solute migration is expressed
directly by the local capacity factork′

i,k. The local equi-
librium assumption in non-equilibrium thermodynamics al-
lows that there is a local relation betweenk′

i,k andϕk, which
can be obtained from LSS model under isocratic elution in
RP-HPLC[41],

logk′
i,k = logk0

w,i − siϕk (6)

wherek0
w,i andsi are the experimental characteristic param-

eters for the given stationary, mobile phase and the solute,
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and they are constant whenϕk changes in the certain range.
With the known values ofk0

w,i and si, the local capacity
factor sequencek′

i,k corresponding to{ϕk} can be obtained
from Eq. (6). As long as�Tk is prescribed andt0 is known,
the sequence numberK of the time unit corresponding to
the time of the solute leaving the column can be confirmed
with Eq. (5).

Based on the continuum principium in hydrodynamics,
the time slice�ti,k (corresponding to the local capacity fac-
tor, k′

i,j,k) during which the solute undergoes the certainϕk

in the column can be expressed by the time unit�Tk dur-
ing which the mobile phase keeps the same concentration
ϕk at the outlet of the pump[42], the local relationship is
obtained:

�ti,k = [(1 + k′
i,k)�Tk]

k′
i,k

(7)

Considering the definition of local capacity factor,k′
i,k =

(tR,k − t0,k)/t0,k, the iterative addition form ofEq. (4) is
expressed:

tR,i =
K−1∑
k=1

�Tk + t0 (8)

wheretR,i = ∑K−1
k=1 �ti,k and t0 = ∑K−1

k=1 t0,k. Taking into
account of the gradient dwell time,td, the retention time of
the solutei, tR,i is:

tR,i =
K−1∑
k=0

�Ti,k + t0 + td (9)

Eq. (9)is a retention time equation with the iterative addition
form, which directly corresponds to any gradient model,
{ϕk} and�Tk. It will be used to predict the solute retention
time under gradient elution.

In isocratic elution there is an experimental linear rela-
tionship between half-band width (w1/2,t in time units) and
the instantaneous capacity factor,k′

f , when the peak maxi-
mum of the solute zone is just passing the end of the column
[42]:

w1/2,t,i = ai + bik
′
f (10)

whereai andbi are experimental constants of the component
i depending on the solute and on the chromatographic sys-
tem. There is a basic relationship of the solute band broad-
ening:

σ2
l,i = 2DitR,i (11)

whereσl,i is the standard deviation of the zone distribution
of the solutei in long measure. Considering three simple
relationships as:

W1/2,l,i = �υiW1/2,t,i; �υi = L

t0(1 + k′
i)

;
W1/2,l,i = 2.354σl,i (12)

InsertingEqs. (10) and (12)into Eq. (11), we can obtain the
local diffusion coefficient under isocratic elution:

Di = 0.09023L2

t30

(ai + bik
′
i)

2

(1 + k′
i)

3
(13)

Eq. (13)shows that the diffusion coefficient under isocratic
elution is related tok′

i, experimental constants,ai, bi, and
system parameters.

Based on the continuum principium and the local equilib-
rium assumption, the local diffusion coefficient,Di,k, under
gradient elution can be obtained:

Di,k = 0.09023L2

t30

(ai + bik
′
i,k)

2

(1 + k′
i,k)

3
(14)

The cellj of the solutei passes the detector (Xi,K = L) with
the local migration velocity�vi,j,K−1 in the time interval,
�tK−1, which needs a time interval, in the solute temporal
distribution,�τi,j,

�τi,j = mi,j,K−1

�vi,j,K−1
(15)

Eq. (15)will be used in the transforming of solute distribu-
tions from the spatial to the temporal one.

ConsideringEqs. (3), (7), (14) and (15)and the solute
band width arose by the dwell time,td, the half-band width
with time unit,w1/2,t,i, can be introduced by:

w1/2,t,i

= 2.354

√√√√ [σ2
0 + σ2

d + ∑K−1
k=0 [2Di,k �Tk(1 + k′

i,k)/k
′
i,k]]

�v2
i,K−1

(16)

whereσ2
d = 2Di,k=0td, andDi,k=0 the local diffusion co-

efficient of the solutei in the mobile phase composition
ϕk=0. The gradient dwell timetd is 0.0044 min for this
HPLC instrument in the paper, andσd in Eq. (16) can
be neglected nowadays for general HPLC instrument. The
parameter�vi,K−1 is the local migration velocity of the so-
lute zone alongx coordinates in stationary phase in the
last time interval,�tK−1. Eqs. (6) and (14)show that the
parametersk′

i,k and Di,k directly relate toϕk, respectively,
sow1/2,t,i relates to{ϕk} through the two coefficients,k′

i,k

and Di,k. It implies that different{ϕk} induces different
w1/2,i,t . Eqs. (14) and (16)will be used to predictw1/2,t,i
corresponding to{ϕk} by insertingEq. (14)into Eq. (16).
For isocratic elution,Eq. (16)is also available by deleting
theσ2

d term.Eq. (16)is the band width equation of iterative
addition form corresponding to{ϕk} in RP-HPLC.

3. Regression and prediction

For given solutes and column system the zone migration
and broadening in gradient and isocratic elution can be pre-
dicted by using a computer program withEqs. (5), (9), (14)
and (16), respectively. In certain range the experimental con-
stants,k0

w,i, si, ai andbi, in Eqs. (6) and (10)only relate to
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the varieties of modifier, solute and column system, but do
not relate to{ϕk}. One must acquire these experimental con-
stants at first through regression method with a limit num-
ber of experiments before the prediction of migration and
broadening. In predicting zone migrations, the coefficients
k0
w,i and si are acquired withEqs. (5), (6) and (9)by us-

ing non-linear regression[43]. Isocratic or gradient elution
retention data acquired in a few preliminary runs (at least
two runs) with different{ϕk} are employed to determine
these experimental constants, and a non-linear least-squares
curve-fitting program was used to obtain the best fit[43]. It
is as a criterion that the estimated coefficients should min-
imize the sum of squares of absolute error between calcu-
lated retention time,tR,i,c, and experimental retention time,
tR,i,e, of those preliminary runs, namely:

Qi,R =
n∑

j=1

(tR,i,e,j − tR,i,c,j)
2 (17)

wherej is the serial number of the experiments being em-
ployed in the regression, andn the total number of the ex-
periment data being used.

The usual mathematic method is thatEq. (17)is taken a
partial differential ofk0

w,i or si, to make the values of their

derivatives zero, where the values ofk0
w,i and si are the

desired answers, respectively. But for our cases it is very
difficult to get the answers with this method. Thus we adopt a
numerical value method in this paper. The numerical values
of k0

w,i andsi are sought in the certain ranges (k0
w,i: 1–1000

andsi: 0.1–10) with the iterative method through computer
aid. The search routine is carried out by these steps.

(1) Insert the given initial of the minimum values ofk0
w,i

and si in their corresponding ranges intoEq. (6) and
acquire the value of theQi,R with Eq. (17).

(2) Keep k0
w,i constant and changesi with a certain step

length, sign thek0
w,i andsi to make the value of theQi,R

minimum.
(3) Changek0

w,i with a certain step length and repeat (1) and

(2) steps until having searched all values ofk0
w,i andsi

in their ranges, and find their appropriate values which
make theQi,R value minimum.

This is a kind of basic search method. Generally speaking,
in definition ranges, the larger the domains of the variances,
k0
w,i andsi, and the shorter the search steps, then the higher

the regression precision. However, this increases the calcu-
lation complication, and the search time arises markedly.

This shortcoming can be overcome by adopting the re-
gional refinement method[44]. Namely, to the two param-
etersk0

w,i and si, at first longer step length is adopted and
rougher regression value of the parameters is obtained. Near
the rougher regression value in a shorter domain of the pa-
rameters are chosen, again more precision regression values
are found with relatively shorter computer time. By repeat-
edly shortening the domains of the two parameters and the

step length the optimum can be found at last. The regression
astringency of this method is ensured by two ways.

(1) The variety values between the two regression values
got in two consecutive searching decrease gradually.

(2) The parameterQi,R is smaller than an appropriate min-
imum value. In this paper, 0.001× ∑n

j=1tR,i,e,j/n is as
the appropriate minim value.

If these conditions reach the estimated coefficients,k0
w,i

and si, will make Qi,R minimum. This method obviously
reduces the calculation complication and improves the cal-
culation efficiency.

After the coefficients,k0
w,i andsi, have been identified, the

band spread parameters,ai and bi, are ergodicly searched
with the same method mentioned above in reasonable do-
mains (both are in 1× 10−5 to 1.0). Band width recursion
equation,Eqs. (14) and (16), is used in the regression pro-
cess. Similar toEq. (17)and the method of obtainingk0

w,i

andsi, the band spread parameters,ai andbi can be obtained
by makingQi,w minimum:

Qi,w =
n∑

j=1

(w1/2,t,e,j − w1/2,t,c,j)
2 (18)

wherew1/2,t,i,e,j and w1/2,t,c,j are calculated and experi-
mental half-band width time unit of the solutei. w1/2,t,c,j
can be got withEqs. (14) and (16). The program frame with
C++ computer language regressing the parameters,k0

w,i, si,
ai andbi is shown inFig. 2. Fig. 3shows the program frame
of the calculation progress for the prediction of the solute
retention time and half-band width.

4. Experimental

An Agilent 1100 liquid chromatograph equipped with a
UV detector, operated at 254 nm, manual injection, a ther-
mostatted column compartment, and a Series G2170AA LC
ChemStation workstation (Hewlett-Packard, PaloAlto, CA,
USA) was used to acquire the elution data. A stainless steel
column A, 50 mm× 4.6 mm i.d., packed with Silasorb C18,
5�m (t0 = 0.506 min) and another stainless steel cartridge
column B, 150 mm×4.6 mm i.d., packed with Silasorb C18,
5�m (t0 = 1.400 min)) (Waters Assoc.) were used. The con-
stant flow rate of the mobile phase was kept at 1 mL min−1

and the temperature at 20◦C in all experiments.
Methanol was used as the strong eluent solvent in mobile

phases with HPLC grade and obtained from Baker (Deven-
ter, The Netherlands). The sample compounds used in this
study were benzene, toluene, nitrobenzene, 2-nitrotoluene,
3-nitrotoluene, 4-nitrotoluene, phenylethanol and phenyl-
propanol. Sodium nitrite was used as the void marker. Water
was doubly distilled and deionized in glass. Mobile phases
were prepared directly in the Agilent 1100 instrument from
the components continuously stripped by a stream of helium.
10�L sample volumes were injected in each experiment.
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Fig. 2. The computer program frame on the regression progress of band
migration and spreading parametersk0

w, s, a and b with C++ language.
Where i is the solute serial number;I is the solute total number;k[i],
s[i], a[i] and b[i] are the arrays storing the regression values ofk0
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and b of the ith solute.
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Fig. 3. Calculation progress of the solute retention time and band width
in given elution mode with the computer aid.

The columns were first equilibrated with the initial con-
centration mobile phase before the beginning of each run. A
5-min flush time was used by 100% pure solvent after the
end of each experiment to clean the column.

5. Results and discussion

5.1. Retention prediction

The data involved three species of solute series in two
column systems under isocratic and gradient used to deter-

mine the regressors and to predict retention and band width.
LSS model and plate theory are cited to predict the be-
haviours of solute zones based on same data for comparing
with the model of this paper. The mean-root-square error (σ)
is adopted to indicate the accuracy of the prediction[45]:

σ =
√∑n

i=1[yc,i − ye,i]2

n − p
(19)

where yc,i is the calculated value of theith experiment
through corresponding equations,ye,i the experimental value
of the ith experiment,n the experimental times, andp the
number of fitted parameters.

For linear gradient elution HPLC, the concentration of the
strong elution in a two-component mobile phase,ϕ, can be
expressed as a linear gradient function:

ϕ = ϕ0 + Bt (20)

whereϕ0 is the initial concentration of the strong solvent
at the start of the gradient,B = (ϕg − ϕ0)/tg the slope
of the gradient controlled by the gradient time,tg, nec-
essary to achieve the final concentration,ϕg. Through the
method described above, the continuous concentration func-
tion, Eq. (20), can be changed into corresponding concen-
tration sequence{ϕk}, which is used in recursion equations
to predict the retention and band width.

The retention equation of gradient elution in literature
[46,47] is:

tR = 1

sB
log

[
2.31sBt0

K0
w

10sϕ0
+ 1

]
+ t0 + td (21)

where the meanings ofK0
w and s are same as inEq. (6).

Eq. (21)is also based onEq. (6) in linear gradient function
determined byEq. (20), which is the sum of an integral
of the solute migration, the void time and the dwell time.
Compared withEq. (21), the deduction ofEq. (9)is just the
combination ofEqs. (4)–(6), and expressed in the repeated
addition form. ThusEqs. (9) and (21)are identical when�Tk

tends to zero, and they have same precision and accuracy in
predicting gradient retentions if�Tk is small enough.

5.2. Band width prediction

A very important assumption that the uniform translation
velocity (v) and total effective diffusion coefficient (D) of
solute zones are constant in whole separation process was
introduced to keep the tenability of plate theory. However,
the parametersv andD are variable along with the transfor-
mation of space–time due to the variable composition of the
mobile phase in gradient elution chromatography. It means
that the concept of plate height is invalid in this case, such as
gradient elution. In addition, even if in isocratic-elution the
assumption is correct due to a constant of the plate height
for given solutes, there are different plate heights for differ-
ent solutes.
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In column separation processes the solvent strength af-
fects not only on the solute migration but also on the band
broadening through that the retention factor affects migration
velocity and diffusion coefficient[48]. One could reach the
aim of optimal resolution in shorter separation time through
obtaining an optimal gradient profile. Unfortunately, the the-
ory of gradient elution chromatography has been developed
to such an extent that relatively precise calculation of the
retention data is achieved, but the precise calculation of the
band width is not yet to be achieved, and the principle of
the optimal gradient profile could not been found for the
given separation system and solute couple due to the failure
in precisely predicting band widths[7,14,46]. The root of
the phenomenon lies in that separation scientists irrelevantly
adopt plate theory to predict band width under gradient elu-
tion, for there is not at all a series of plates with the same
plate height in gradient elution processes.Fig. 4 shows dis-
tinctly the effect of the concentration of the stronger solvent
on diffusion coefficients under isocratic elution. The diffu-
sion coefficients increase with the addition of the organic
solvent concentration, and the increase degree changes with
different solutes, which means that the local diffusion coef-
ficients are changing according to the local concentration of
the mobile phase in gradient elution processes. The different
solutes have also different diffusion coefficients in the same
concentration of the mobile phase. Analysts commonly cal-
culate band widths through the number of theoretical plate
with the assumption that the number of theoretical plates
is independent of the mobile phase composition through-
out the separation progress, butFig. 4 indicates that the as-
sumption is not the truth in gradient elution processes. In
fact, the number of theoretical plate depends not only on the
column-self, but also on the solute, concentration and com-
posing of the mobile phase. It implies that it is not appropri-
ate to predict half-band width with the average theoretical
plates under gradient elution.

Virtually, separation scientists have known that three phe-
nomena lead to solute band spreading under gradient elu-
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Fig. 4. Dependence of the diffusion coefficient in the isocratic elution
on the mobile phase composition. TheD values were calculated with
Eq. (13) through experimentaltR,i,e,j and w1/2,t,i,e,j on 50 mm column
((�) 2-nitrotoluene; (�) 3-nitrotoluene; (�) 4-nitrotoluene).

tion [13]: (a) broadening of the solute band as in isocratic
elution; (b) solute band compression caused by a steady de-
crease in the capacity factor; (c) an addition compression of
the band resulting from the fact that the front of band moves
with a lower eluting strength than the end of the band. How-
ever, those ideas could not be satisfactorily applied into the
practical calculations of band widths[7,8,13,14]. The phe-
nomena (a) and (b) mean that the local diffusion coefficient
Di,j,k must be introduced and the phenomena (b) and (c)
require that we must divide the space that solute occupies
into enough many cells. Of course, Lagrangian description,
the continuum axiom and local equilibrium assumption also
require us to describe the evolution of solute bands in a dis-
crete space and time format. InEq. (2), we can consider the
three phenomena leading to band spreading in a same equa-
tion. The first term on the right-hand side ofEq. (2) is for
the phenomena (a) and (b) with local diffusion coefficient
Di,j,k. The second term on the right-hand side ofEq. (2) is
for the phenomena (c) by considering the overlapping and
stretching between adjacent cells. The contribution of the
overlapping and stretching between adjacent cells to band
widths could be neglected with high column efficiency or in
linear chromatography.

For comparing with band width recursion equation,
Eq. (16), the literature band-width equation[14] is cited as:

w = 4t0
1 + k′

f√
N

(22)

where w = 4σ, and N the number of theoretical plates,
which obtained from the average value from several runs.
For comparing withEq. (16)conveniently,Eq. (22)is trans-
formed into the expression of half-band width:

w1/2,t =
√

5.55t0(1 + k′
f )√

N
(23)

In fact, Eq. (23)just comes from the definition formula of
the number of theoretical plates. The average value adopted
for the parameterN in Eq. (23)undoubtedly brings on big
errors in the band width predictions, especially, in different
gradient elution profiles, since the diffusion coefficient of
solute zones depends on the species of solutes and the com-
position of mobile phases. In the processes of gradient elu-
tion, the local concentration of the mobile phase (ϕk) around
solute zones changes as the time and the space change, and
the solute local diffusion coefficients,Di,k, in Eq. (14)and
solute local migration velocity,�vi,k, in Eqs. (6) and (12)de-
pend on the change ofϕk. Therefore accurate band-width
predictions should adopt the accumulation manner of the so-
lute local diffusion coefficients to local migration velocity
and migration time of the solute. At this time, the concept of
traditional theoretical plates has lost its intrinsic meaning in
gradient elution. It just is the reason that Giddings inducted
the local theoretical plate[1]. However, he and others did
not follow it far.

The band width recursion equations,Eqs. (2) and (16),
were presented by using the laws, Lagrangian description
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and the continuum axiom in mechanics of continua, and the
local equilibrium assumption in non-equilibrium thermody-
namics. Then the chromatographic processes of solute zones
were discretized by space–time cells, and the contributions
of individual space–time cells to the band width were piled
up in whole chromatographic processes. The relationship,
Eq. (14)between the local diffusion coefficient,Di,k, and the
local capacity factor,k′

i,k, were set up withEqs. (10)–(12),
then the relationship betweenDi,k and local concentration
of the mobile phase,ϕk, of the solute zone was acquired
throughEqs. (6) and (14). Therefore,Eqs. (2), (16) and (22)
are different on both their theoretical bases and deduction
processes.Eq. (16), due to taking into account the essen-
tial character that the local diffusion coefficient time-varies
with local concentration of the mobile phase, should more
accurately reflect the evolvement of the solute band width.

Table 1shows that the mean-root-square errors of pre-
dicted half-band widths withEq. (16)under isocratic elu-
tion with 50 mm column (σm(I) = 0.0103 or σm(II ) =
0.0111) were remarkably smaller than one’s usingEq. (23)
(σm(III ) = 0.0410), and there are no evident errors between
adopting two data ofw1/2,t,e, with both 40 and 70%, and
with both 40 and 60% methanol concentrations. The factors
affecting the broadening of the chromatographic zones are
very complicated, so it is considered acceptable that the rela-
tive errors betweenw1/2,t,c andw1/2,t,e are lower than±10%
[44]. In Table 1, the domain of the relative errors ofw1/2,t,c

Table 1
Comparison of the experimental and predicted half-band widths with different methods in isocratic elution with 50 mm column

Compound Methanol
concentration
(%)

w1/2,t,e (min) w1/2,t,c(min)a Relative error (%)b

I II III I II III

2-Nitrotoluene 40 0.5267 0.5277 0.5267 0.5652 0.19 0.00 7.30
3-Nitrotoluene 0.4963 0.4972 0.4963 0.6035 0.18 0.00 21.60
4-Nitrotoluene 0.5680 0.5673 0.5680 0.5669 −0.12 0.00 −0.19

2-Nitrotoluene 50 0.2252 0.2488 0.2488 0.2390 10.48 10.48 6.13
3-Nitrotoluene 0.2280 0.2407 0.2329 0.2792 5.57 2.15 22.48
4-Nitrotoluene 0.2543 0.2651 0.2720 0.2626 4.24 6.96 3.26

2-Nitrotoluene 60 0.1283 0.1274 0.1282 0.1183 −0.70 −0.08 −7.82
3-Nitrotoluene 0.1181 0.1295 0.1176 0.1357 9.65 −0.42 14.89
4-Nitrotoluene 0.1438 0.1340 0.1437 0.1281 −6.82 −0.07 −10.92

2-Nitrotoluene 70 0.0755 0.0755 0.0770 0.0646 0.00 1.99 −14.43
3-Nitrotoluene 0.0825 0.0825 0.0679 0.0721 0.00 −17. 70 −12.55
4-Nitrotoluene 0.0781 0.0781 0.0895 0.0687 0.00 14.60 −12.01

2-Nitrotoluene σc 0.0167 0.0167 0.0308
3-Nitrotoluene 0.0121 0.0109 0.0852
4-Nitrotoluene 0.0103 0.0148 0.0142

σm
d 0.0103 0.0111 0.0410

a The I and II columns indicate the predicted half-band widths usingEq. (16), adopting regression parametersai and bi through the experimental
data ofw1/2,t,i, w1/2,t,e, with both 40 and 70%, and with both 40 and 60% methanol concentrations, respectively. The III column indicates the predicted
half-band widths usingEq. (23) and the predictedtR,i in Eq. (21) through the experimental data with both 40 and 70% methanol concentrations. The
number of theoretical plates,N = 3000, is the average value for the all solutes and all elution conditions listed in the table.

b The relative error of the same solute between the experimental and predicted half-band widths. It (including below two labels) has the same meaning
in Tables 2 and 3.

c The mean-root-square error for the same solute under different methanol concentrations obtained throughEq. (19).
d The mean-root-square errors for the same prediction way and all solutes under different methanol concentrations obtained throughEq. (19).

in the column I usingEq. (16)is −6.8 to 10.5%, which is the
best among the three methods and almost within the domain
of ±10%. The method usingEq. (23)with the number of the-
ory plate for thew1/2,t,c in the column 3 is the worst among
the three methods, whose relative error reaches 22.5%, and it
already loses prediction meanings. It is always the worst for
the prediction of 3-nitrotoluene with the literature method
(the column III inTable 1) for isocratic elution of different
methanol concentrations. The reason is that the column ef-
ficiency or the number of theory plate is different for differ-
ent solutes, which consequentially induces the considerable
prediction error for some solutes if the number of theoretical
plates is adopted to predictw1/2,t for different solutes.

In Table 2, the band width recursion equation,Eq. (16),
was applied to predict half-band width under gradient elu-
tion on the 50 mm column withN = 3000. The range of the
relative errors withEqs. (16) and (23)are in−5.26 to 9.41%
(lower than±10%) and−55.7 to 27.5% (obviously higher
than±27%), respectively. And the mean-root-square error
for all solutes withEqs. (16) and (23)in gradient elution are
0.00502 and 0.0475, respectively. The mean-root-square er-
ror with the literature equation is 9.5 times the magnitude of
one with the band width recursion equation. It is clear that
the prediction effect of half-band width using the literature
method under gradient elution is not only worse than one
with the band width recursion, but also worse than the effect
of itself used under isocratic elution (Table 1). The above
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Table 2
Comparison of the predicted and experimental half-band width with different methods under gradient elutions with 50 mm column

Compound Gradient (min) w1/2,t,e (min) w1/2,t,c (min)a Relative error (%)

I II I II

Benzene 8 0.0968 0.0971 0.1008 0.31 4.13
Toluene 0.0951 0.0901 0.1193 −5.26 25.45
Nitrobenzene 0.1095 0.1198 0.0593 9.41 −45.84

Benzene 10 0.1093 0.1093 0.1091 0.00 −0.18
Toluene 0.1032 0.1032 0.1316 0.00 27.52
Nitrobenzene 0.1277 0.1277 0.0613 0.00 −52.00

Benzene 15 0.1328 0.1361 0.1244 2.48 −6.33
Toluene 0.1313 0.1318 0.1552 0.38 18.20
Nitrobenzene 0.1300 0.1405 0.0643 8.08 −50.54

Benzene 20 0.1569 0.1569 0.1350 0.00 −13.96
Toluene 0.1605 0.1605 0.1779 0.00 10.84
Nitrobenzene 0.1493 0.1493 0.0661 0.00 −55.73

Benzene σ 0.00234 0.03234
Toluene 0.00355 0.03366
Nitrobenzene 0.01039 0.09531

σm 0.00502 0.0475

a The I column indicates predicted half-band width under gradient elution usingEq. (16), adopting regression parametersai and bi through the
experimental data,w1/2,t,exp, with 10, 15 and 20 min linear gradient elution times and 40–100% methanol concentrations. And the II column indicates
the predicted half-band width usingEq. (23)with the same calculation way asTable 1, and whereN = 4000.

discussion explains that the considerable errors will arise as
long as the concept of theoretical plates is adopted to predict
band widths under gradient elution, since the local migra-
tion velocity, local diffusion coefficient, and local capacity
factor of the volume elements (cells) of solute zones are
time-varying with the local concentration of mobile phase.

Table 3shows comparison results of predicted half-band
width with Eqs. (16) and (23)under gradient elution on
150 mm-column withN = 5500. The relative error ranges
using withEqs. (16) and (23)are in−0.02 to 2.38% (lower
than ±3%) and −25.9 to 15.2% (obviously higher than
±15%), respectively. And the total mean-root-square er-
ror for different solutes and gradient elution profiles with
Eqs. (16) and (23)are 0.0009 and 0.0165, respectively. The

Table 3
Comparison of the predicted and experimental half-band width with different methods in gradient elutions with 150 mm column

Compound Gradient (min) w1/2,t,e (min) w1/2,t,c (min)a Relative error (%)

I II I II

Phenylethanol 5 0.0614 0.0614 0.0571 0.06 −6.93
Phenylpropanol 0.0575 0.0575 0.0663 0.02 15.25

Phenylethanol 10 0.0803 0.0803 0.0684 0.02 −14.81
Phenylpropanol 0.0757 0.0775 0.0847 2.38 11.84

Phenylethanol 20 0.1044 0.1044 0.0773 0.01 −25.93
Phenylpropanol 0.1079 0.1079 0.1015 −0.02 −5.97

Phenylethanol σ 0.00005 0.02990
Phenylpropanol 0.00180 0.01410

σm 0.00090 0.01650

a The I column indicates the predicted half-band widths under gradient elution usingEq. (16), adopting regression parametersai and bi through
w1/2,t,e with 5, 10 and 20 min linear gradient elution times and 50–100% methanol concentrations. And the II column indicates the predicted half-band
widths usingEq. (23)with the same calculation way asTable 1, and whereN = 5500.

mean-root-square error with the literature equation is 18.3
times the magnitude of one with the band width recursion
equation. In addition, the simulatedw1/2,t with Eq. (16)ver-
sus the single experimentalw1/2,t for the three series (13
times) of the experiments under linear gradient elution on
50 mm column were shows inFig. 5. The agreement be-
tween the predicted values and the experimentalw1/2,t was
quite good. The repeated experiments were not carried out
in this paper, so there are remarkable non-systematic errors
under a certain degree.

Under gradient elution the separation system is always in
the state of non-equilibrium thermodynamics. The concen-
tration of the mobile phase (ϕk) are changing according to
the separation time, solute local diffusion coefficients (Di,k)
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Fig. 5. The simulatedw1/2,t with Eq. (16) vs. the experimentalw1/2,t

for the three series of linear gradient elution experiments on the 50 mm
column ((�) 30–100% methanol concentrations in 5, 8, 10, 15, 20 min;
(�) 40–100% in 8, 10, 15, 20 min; (�) 40–80% in 5, 10, 15, 20 min).

are changing according toϕk. In this paperDi,k was related
to ϕk in Eq. (14), so w1/2,t was described as the iterative
addition arising from each discrete time unit contribution to
band broadening inEq. (16). Therefore,Eq. (16)describes
the evolution process of the band broadening more accu-
rately under gradient elution. The prediction under gradient
elution was worse than the prediction in isocratic elution
with Eq. (23), since an average value of the number of the-
oretical plates for different solutes and gradient elution pro-
files, which directly leads to considerable errors.

Recursion of separation states in space- and time-
dependent fields is a universal method in dealing with the
evolution of solute zones in column separation processes.
A basic application of recursion equations is to accurately
calculate retention times and band widths under given
space- and time-dependent fields (e.g. pre-set gradient pro-
files). Recursion equations certainly enlarge the theories of
band spreading from constant fields (e.g. isocratic elution
chromatography) to space- and time-dependent fields (e.g.
gradient elution chromatography). However, a more im-
portant application of the recursion equations is in finding
an optimal thermodynamic separation path in the ergodic
phase-space (a phase plane constructed by two vertically
coordinates of the operation parameter and time) through
using non-equilibrium thermodynamic separation theory
[2,20,22–27], multi-stage decision and optimal control
methods. Recursion equations are essential in the optimal
control of separation processes[31,32].

6. Conclusion

(1) The evolution of solute zones in space- and time-
dependent fields can be described by the iterative
addition of local density of solute zones with the meso-
scopic approach, which involved Lagrangian descrip-

tion, the continuity theory and the local equilibrium
assumption.

(2) The recursion equations were proposed to predict the
evolution (migration and spreading) of solute zones in
RP-HPLC through directly relating the local retention
factor and the local diffusion coefficient to the local mo-
bile phase concentration. Actually, band width recursion
equation is the accumulation of local diffusion coeffi-
cients of solute zones to a series of discrete-time slices.

(3) The comparison results of the recursion equations and
literature equations dealing with the same experimen-
tal data of zone migration and spreading in RP-HPLC
show that the recursion equations can more accurately
predict band width under gradient elution. Though the
concept of theory plate is appropriate to indicate column
efficiency, it fails to predict band width under gradient
elution.

7. Nomenclature

ai, bi experimental constants of the
componenti in Eq. (10)

B the slope of linear gradient function
ci,j,k local molar concentration of the

componenti in the volume element
j at the timetk. The subscript
marker,i, j, k, indicates local
parameter of the componenti in the
volume elementj at the timetk

Di,j,k local diffusion coefficient
Ei,j,k local electrical field strength
F volume flow rate of mobile phase
i the serial number of solute

components
j the serial number of volume

elements or the experiments
employed in the regression

k the serial number of the timetk
k′

f the instantaneous capacity factor
when the peak maximum of solute
zone is just passing the end of the
column

k′
i,j,k local capacity factor

k′
i,k predigest local capacity factor

{k′
i,k} the sequence of local capacity factor

k0
w,i, si experimental parameters of the

componenti in LSS model
Ki,j,k local thermodynamic distribution

constant
L column length
mi,j,k+1 volume element width along

column axes of the cellj of solutei
at the timetk+1

n the experimental times inEq. (17)
N the number of theoretical plates
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p the number of fitted parameters
Qi,R the sum of squares of absolute error

between calculated and experimental
retention time of the componenti

Qi,w the sum of squares of absolute error
between calculated and experimental
half-band width of the componenti

t0 the column dead time
td gradient dwell time
tg the gradient time
tk thek point at time axis
tR,i retention time of solutei
tR,i,c,j the calculated retention time of

solutei of the jth data
tR,i,e,j the calculated retention time of

solutei of the jth data
�τi,j It needs time that volume element

j passes the detector (Xi,K = L)
�ti,k thekth time interval of solutei
�tk thekth given constant time interval
uj,k space- and time-dependent field

acting onjth volume element
j at the timetk

�vi,j,k, �vi+1,j,k local migration velocity
of the components,i andi + 1,
respectively

�vi,k predigest local migration velocity
of the componenti

V0 injected solute column volume
w1/2 half-band width, band-width half

band width at height
w1/2,l half-band width in length units
w1/2,t half-band width in time units
w1/2,t,c,j experimental half-band width time

unit of the solutei of the jth data
w1/2,t,i,e,j experimental half-band width time

unit of the solutei of the jth data
x the direction of separation paths
Xi,j,k, Xi,j,k+1 the positions of the volume element

j in stationary phase at the time
ti,k andti,k+1, respectively

Xi,K the position at the column terminal
of solutei at the end of separation
process

Xi,0 the positionat at the column inlet
of solutei at the run beginning

yc,i the calculated value of
the ith experiment through
corresponding equations

ye,i the experimental value of the
ith experiment

Greek letters
δi,j,k=0 the length of the volume elementj

on thex axis along separation path
at initial time tk=0

ϕ0 the initial concentration of the strong
solvent at the start of the gradient

ϕi,j,k local strong eluent concentration
of mobile phase

ϕi,k predigest local strong eluent
concentration of mobile phase

{ϕk} the strong eluent concentration
sequence at the pump head

λi,k the stretch ratio of volume elements
at timetk

µi,j,k local chemical potential
ρi,j,k, ρi+1,j,k local solute densities of the two

components,i andi + 1
ρi,j,k=0, ρi+1,j,k=0 local solute densities at initial

time tk=0
ρi(x, t0), ρi+1(x, t0) macro density distributions at initial

time t0
σ standard deviation of solute zone

distribution
σd the standard deviation of solute band

arose from gradient dwell timetd
σi,k, σi,k+1 the standard deviation of the solute

bandi at the timesti,k andti,k+1
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